→   Кондиционирование в космосе
18 декабря 2017
Кондиционирование в космосе

Для поддержания жизнедеятельности человека в космосе разработана и постоянно совершенствуется система жизнеобеспечения (СЖО). Это сложный многокомпонентный комплекс, состоящий из ряда самостоятельных, но взаимосвязанных систем. Собственно, за кондиционирование в нашем земном понимании отвечают две из них – система обеспечения газового состава и система обеспечения теплового режима.

Для жизни человека в космосе необходимо прежде всего поддерживать определенное давление и состав окружающей газовой среды, постоянно пополнять количество кислорода и удалять углекислый газ. Кроме того, в газовой среде и на стенках кабин и отсеков КА постепенно накапливается вода, выделяемая космонавтами при дыхании и в виде пота. Ее тоже нужно удалять. И, наконец, еще одна задача, которую нужно решить при кондиционировании в космосе, – это очистка воздуха от мельчайших пылинок, крошек, мусора. В космосе это еще важнее, чем на Земле. Дело в том, что в невесомости пыль и мусор не сядут на пол – там нет ни силы тяжести, ни пола. Со всем этим и должен справиться «космический кондиционер».

Решения разработчиков этой системы в СССР и США отличаются друг от друга. В американских кораблях «Меркурий», «Джемини», «Аполлон» (кроме «Шаттлов») применена чисто кислородная атмосфера с давлением 260-280 мм ртутного столба. Такое решение упрощает задачи конструкторов, поскольку снижает требования к прочности элементов конструкции корабля и позволяет уменьшить его вес. А каждый килограмм на орбите пока еще дороже золота. Но кислородный состав «воздуха» вынуждает астронавтов перед стартом около двух часов дышать в корабле чистым кислородом, а при выведении аппарата на орбиту стравливать давление из кабины. Запасы кислорода на американских кораблях находятся в баллонах высокого давления.

Наши специалисты решили создать внутри корабля атмосферу, подобную земной. С точки зрения комфорта это наилучшее решение. Но при наддуве скафандров (а это необходимо в случае нарушения герметичности космического корабля и, как следствие, резкого падения давления в кабине) создается большой перепад давления: внутри скафандра примерно 760 мм ртутного столба, снаружи – ноль. В этих условиях космонавт становится практически обездвижен. Выход есть: снизить давление и перейти на дыхание чистым кислородом, что технически очень непросто. Но это, пожалуй, единственная проблема. Вторая очевидная проблема – увеличение веса корабля – имеет обратную сторону, которая означает значительный плюс для экипажа, – радиационная защита в кораблях с земной атмосферой значительно лучше за счет увеличения толщины оболочки корабля.

В длительных полетах это имеет решающее значение. Поэтому в современных космических кораблях – как в российских, так и в американских – создается земная атмосфера. Отвечает за ее воспроизведение система, которая по терминологии отечественной космонавтики называется СОГС – система обеспечения газового состава.

СОГС предусматривает в качестве основного источника кислорода регенерационную установку, в которой кислород восстанавливается из воды. Интересна история создания первой подобной установки. Специалистам ОКБ-124 под руководством Г. И. Воронина в конце 50-х годов прошлого века было поручено решить вопрос об обеспечении кислородом космонавтов на космическом корабле «Восток». Решение было выбрано в пользу применения регенерационной установки, но в авиации опыта конструирования и применения регенераторов не было. Тогда с помощью предприятий-разработчиков регенерационных установок для подводных лодок был подобран ее тип и материал, который при прохождении через него влажного воздуха выделял кислород с образованием щелочи. Щелочь вступала в реакцию с углекислым газом и связывала его, превращая в твердое вещество. Ресурс установки – 12 суток, что ораздо больше ресурса системы подачи кислорода первого пилотируемого КА США «Меркурий» (36 часов).

Повышенный ресурс СОГС КА «Восток» имел большое значение для спасения космонавтов при отказе тормозного двигателя. В этом случае КА все равно бы оказался на Земле за счет естественного торможения, поскольку остатки атмосферы на высотах орбитального полета еще имеются. Ожидаемое время нахождения КА на орбите без выдачи тормозного импульса – около недели, космонавт на «Востоке» мог относительно спокойно дождаться приземления, правда, это могло случиться практически в любой точке траектории, например в Тихом океане или в горах Южной Америки. Малый ресурс системы подачи кислорода «Меркурия» требовал повышенной надежности работы тормозного двигателя. Его отказ приравнивался к гибели астронавта, так как корабль остался бы на орбите значительно дольше заданных 36 часов.

Одно необходимое замечание о работе СОГС. Важную роль на борту КА в условиях невесомости – там нет конвекции – играют вентиляторы и воздуховоды. Они установлены в отсеках так, чтобы не возникало застойных зон и обеспечивалось равномерное перемешивание газовой среды. В противном случае возможна ситуация, когда космонавт (или астронавт), неподвижно выполняя какой-то длительный эксперимент или во время сна, «выдышит» кислород в пространстве рядом с собой и почувствует себя плохо от избытка углекислого газа.

Каждое новое поколение КА имело на борту усовершенствованные системы СОГС. Так, в составе СОГС транспортного корабля «Союз» используются регенератор и поглотитель углекислого газа с газоанализатором, блоком вентиляторов и фильтрами для поглощения вредных газов и пыли. При изменении парциального давления кислорода газоанализатор выдает сигнал на привод исполнительного устройства, который, распределяя газовую смесь между регенератором и поглотителем, регулирует скорость реакции в регенераторе и скорость поглощения углекислого газа и вредных примесей в поглотителе.

На первой долговременной орбитальной станции «Салют» принцип работы СОГС не изменился. Были добавлены дополнительные блоки поглощения углекислого газа. С учетом значительного увеличения объема кабины были установлены воздуховоды и циркуляционные вентиляторы. Дополнительный фильтр вредных примесей был способен поглощать выделения материалов станции и продуктов жизнедеятельности экипажа (аммиак, окись углерода, сероводород, ацетон, жирные кислоты, углеводороды и др.). В схему обеспечения Международной космической станции воздухом, пригодным для дыхания, включены сложные многокомпонентные устройства, которые взаимодействуют друг с другом.

Основной системой подачи кислорода в гермообъемы МКС является российская система «Электрон», которая работает по принципу разложения воды на кислород и водород (водород удаляется за борт станции). Все системы обеспечения жизнедеятельности МКС дублируются на случай отказов. Дублирующей для «Электрона» системой является твердотопливный генератор кислорода (ТГК). Кислород в генераторе получают из шашек, в которых находится кислородсодержащее вещество в твердом виде. Шашки «поджигают» (конечно, речь идет не об открытом пламени), и в процессе горения выделяется кислород. Температура внутри шашки достигает +450°С. Для одного человека необходимо около 600 литров кислорода в сутки. В зависимости от типа шашки при ее сгорании выделяется от 420 до 600 литров кислорода.

Кроме того, кислород доставляется на МКС грузовыми кораблями «Прогресс» в баллонах в газообразном виде под высоким давлением. Как мы уже говорили, для нормальной жизнедеятельности на станции нужно очищать атмосферу от углекислого газа.

Заметим, что превышение содержания углекислого газа в атмосфере гораздо опаснее, чем снижение количества кислорода. Это к вопросу о том, что некоторые производители бытовых кондиционеров пытаются выдать как свое преимущество «доставку кислорода» в комнату.

Не надо этим заниматься. Лучше бы боролись с углекислотой. Основным средством для очистки атмосферы от углекислого газа на борту МКС является система «Воздух». Принцип работы этой системы состоит в адсорбции (поглощении) углекислого газа с последующей вакуумной регенерацией поглотительных патронов.

Блок очистки атмосферы от микропримесей (БМП) очищает воздух от всевозможных вредных газообразных примесей в атмосфере станции. Это тоже система регенерационного типа, ее патроны работают в режиме очистки 18-19 суток с последующей регенерацией. Ресурс ее главных функциональных элементов – патронов очистки атмосферы – составляет три года, но даже за десять лет работы системы необходимость их замены не возникла: газоанализаторы показывают отличное состояние атмосферы.

Кроме того, нормальный состав атмосферы поддерживают дублирующие системы: одноразовые поглотительные патроны, фильтры удаления вредных примесей и очистки от дыма, а также устройство обеззараживания воздуха «Поток», которое автоматически включается каждые сутки на шесть часов и обеззараживает атмосферу МКС.

Теперь рассмотрим работу систем терморегулирования. Ее задача – поддержание температуры КА и газовой среды (атмосферы) в его герметичных обитаемых отсеках. Для сравнения – у поверхности Земли привычный для нас в быту кондиционер должен использоваться при температуре наружного воздуха в среднем от -15 до +40°C, при этом окружающая среда – воздух за окном – либо холодный, либо теплый. На орбите условия работы космического кондиционера совсем другие. Определяющими тепловыми воздействиями в ходе орбитального полета являются солнечное излучение и тепловыделение от работающей на борту аппаратуры.

На солнечной стороне орбиты идет интенсивный нагрев поверхности КА, обращенной к Солнцу (противоположная сторона при этом остается холодной). На теневой части орбиты КА охлаждается. Температура поверхности КА при этом может меняться в очень широких пределах – от +200 до -200°C. Тепловыделение внутренних источников – приборов, агрегатов, самого экипажа – достигает значительных величин и постоянно увеличивается по мере усложнения стоящих перед экипажами задач. Если на американском космическом корабле «Джемини», например, тепловыделение бортовой аппаратуры составляло порядка 500-600 ккал/ч, тепловыделение самих астронавтов – 230 ккал/ч (то есть в сумме примерно 1 кВт), то на современной Международной космической станции речь идет уже о 70-80 кВт (!). Подчеркнем – здесь и далее речь идет только об орбитальном участке полета. Участки выведения на орбиту и особенно спуска с нее требуют своих решений.

Таким образом, конструктор космических аппаратов (КА) – транспортных кораблей и станций – вынужден решать две прямо противоположные задачи: одновременно предохранять космический аппарат от переохлаждения и от перегрева. Для их решения используется система, в отечественной космонавтике называемая СОТР – система обеспечения теплового режима. Это вторая главная часть космического кондиционера. СОТР представляет собой совокупность различных средств и устройств, регулирующих внешний и внутренний теплообмен КА. В состав СОТР входят средства пассивного терморегулирования (СПТР) и комплекс средств активного регулирования тепловых процессов, называемый системой терморегулирования (СТР). СПТР – это набор конструктивных элементов, обеспечивающих заданные параметры теплообмена с помощью излучения и теплопроводности (терморегулирующие покрытия, тепловая изоляция и термозащита, термомосты и термосопротивления), а СТР – это вентиляционные устройства,  жидкостной контур с теплообменными устройствами и средствами регулирования тепловых потоков, активные средства регулирования лучистого теплообмена и т.д.

Главное в СПТР – это термозащита, своего рода космическая «шуба». Только в космосе она служит не столько для согрева, сколько для термоизоляции конструкции корабля. Роль такой «шубы» выполняет так называемая экранно-вакуумная теплоизоляция (ЭВТИ) – она многослойная, требует тщательного подбора материалов. «Пошив» и «надевание» «шубы» на космический корабль – это трудоемкая технологическая операция.

Но одной изоляции мало. Прежде всего она не решает задачи отвода избытка тепла. Для этого и предназначена система терморегулирования – СТР. Принцип ее построения наглядно раскрывается на примере космических кораблей «Восток» и «Восход». В ее состав входили основной и резервный вентиляторы, теплообменник и система автоматического регулирования температуры. Приводимый в движение вентилятором (а как иначе, без вентилятора никак) воздух снимал тепло, исходившее от приборов гермоотсека и от космонавта (на «Восходе» – от космонавтов), и далее он направлялся в теплообменник. Космонавт устанавливал необходимую температуру, поддерживавшуюся потом автоматически. Чувствительный элемент в соответствии с заданной температурой вырабатывал управляющий сигнал, который влиял на положение специальной шторки, определявшей расход воздуха в теплообменнике. С помощью шестеренчатого гидронасоса через трубы теплообменника прокачивался хладагент, отбиравший тепло от воздуха и переносивший его (тепло) на радиационную поверхность. Циркулируя по трубопроводам, расположенным на этой поверхности, хладагент отдавал ей свое тепло, излучавшееся далее в космос. Такая система весьма эффективно поддерживала заданную температуру с точностью ±1,5°С.

Следующее поколение СТР было реализовано в конструкции корабля «Союз» и долговременной орбитальной станции (ДОС) «Салют». Весьма большие размеры гермоотсека ДОС «Салют», значительные тепловые мощности, выделяемые ее аппаратурой и экипажем, заставили найти новые подходы к решению проблемы обеспечения теплового режима, хотя основные элементы СТР этих КА похожи друг на друга. Прежде всего это два основных жидкостных контура: внутренний, предназначенный для терморегулирования жилых отсеков, и внешний, служащий для отвода избыточного тепла от гермоотсека в космосе. Тепло снималось из внутреннего объема КА с помощью двигавшегося под напором вентиляторов воздуха и передавалось в газожидкостном теплообменнике жидкости, прогонявшейся с помощью гидронасосов по гидромагистрали.

Далее оно передавалось в жидкостно-жидкостном теплообменнике внешнему контуру и сбрасывалось в космос с радиационной поверхности (радиатора) наружного теплообменника. Для решения задачи удаления влаги из атмосферы станции служили специальные холодильно-сушильные аппараты. Влага оседала на охлаждавшихся до температуры порядка +5°С поверхностях этих аппаратов, собиралась в емкости, а затем подавалась в систему, регенерировавшую из конденсата воду.

Температура жидкости внутреннего контура регулировалась с помощью автоматики и регуляторов. Это позволяло поддерживать на необходимом уровне температуру стенок холодильно-сушильного агрегата, а значит, и уровень влажности воздуха в отсеках.  Температура воздуха также регулировалась автоматически. Так как при изменении температуры жидкости изменяется и занимаемый ею объем, то есть меняется давление в охлаждающих трактах, в системе терморегулирования был предусмотрен компенсатор объема.

Когда на станции нет экипажа и ее аппаратура выделяет мало тепла, температура воздуха в гермоотсеке понижается. Для того чтобы она не опустилась ниже допустимого предела, в составе системы терморегулирования был предусмотрен электрообогреватель. В ходе многолетней эксплуатации таких орбитальных станций и космических кораблей, как «Салют» и «Союз», было установлено, что использовать в целях обеспечения комфортного климата сушильно-холодильные системы не самый лучший вариант. Таких систем попросту недостаточно для того, чтобы поддерживать требуемую обработку искусственной атмосферы и оптимальный уровень влажности. Поэтому при переходе к эксплуатации орбитального многоблочного комплекса «Мир» перед разработчиками встал вопрос о создании инновационных кондиционирующих установок. Впервые за всю историю мирового космического машиностроения был разработан и введен в постоянную эксплуатацию высокоэффективный и компактный комплекс автономного типа, основанный на парокомпрессионном цикле. Данная система кондиционирования работала с так называемыми компрессорами «сухого типа», наряду с уникальным воздухоохладительным модулем нового поколения.

Надежность компрессорного оборудования в условиях орбитального функционирования обеспечивал сварной каркас на основе алюминиевых сплавов. Внутренняя часть, а именно холодильный контур, по которому циркулировал фреон, был изготовлен с использованием исключительно нержавеющих металлов.

Дальнейшее развитие получила система терморегулирования Международной космической станции. Радиаторы современной МКС работают на аммиаке. Испаряясь при комнатной температуре (при давлении в 10 атмосфер), аммиак хорошо работает в холодильном цикле, охлаждая МКС, нагревающуюся на солнце и за счет своих внутренних процессов. Внутренний контур МКС использует для охлаждения обычную воду, которая охлаждается испарением аммиака из внешнего контура. На сегодня штурные радиаторы позволяют МКС скидывать в окружающее пространство около 70 кВт тепловой мощности с возможностью увеличения теплового сброса еще на 14 кВт.

Сегодня на Международной космической станции площадь радиаторов для сброса тепла уже сравнима с площадью солнечных батарей (рис. 2). Бортовые системы МКС на дневной стороне непрерывно подворачивают панели солнечных батарей и радиаторов, ориентируя первые на максимальный прием солнечного света, а вторые на минимальный. Минимизировать солнечный нагрев самих радиаторов должен и их белый цвет – эстетика здесь ни при чем. На теневой же стороне станция ориентирует панели батарей и радиаторов к плоскости орбиты, подобно крыльям и килям летящего самолета. Здесь первостепенной задачей на 45 темных минут становится минимизировать сопротивление остатков атмосферы, которые на высоте 400 км все же есть и тормозящий эффект которых виток за витком постепенно сказывается, что приводит к замедлению и снижению высоты орбиты. Станция как бы шевелит «крыльями» – медленно и непрерывно. Со стороны очень красиво…

Перед разработчиками было поставлено достаточно много технических и конструкционных задач, которые удалось решить в ходе многочисленных наземных испытаний. Конструкция орбитальных кондиционеров непрерывно совершенствуется и обновляется. Это, в свою очередь, позволяет добиваться более значимых успехов для космонавтов в создании более комфортных условий пребывания на орбите.

Текст: Михаил Николаев

Источник: Журнал «ON» (http://on-m.ru/2017/12/18/konditsionirovanie-v-kosmose)

Group Group Group Path 5 Copy 3 Path 5 Copy 3 Group 8 Path 5 Copy 4 Group Group Group Group 4 Group 13 Group 12 Group 6 Group Group Group Group 15 Page 1